Колесо вращается вокруг неподвижной оси так, что угол φ его поворота зависит от времени как φ = at2, где а = 0,20 рад/с2. Найти полное ускорение w точки А на ободе колеса в момент t = 2,5 с, если линейная скоpость точки А в этот момент v = 0,65 м/с.
Частица А движется по окружности радиуса R = 50 см так, что ее радиус-вектор r относительно точки О (рис. 1.5) поворачивается с постоянной угловой скоростью ω = 0,40 рад/с. Найти модуль скорости частицы, а также модуль и направление вектора ее полного ускорения.
Точка движется по плоскости так, что ее тангенциальное ускорение wτ = а, а нормальное ускорение wn = bt4, где а и b — положительные постоянные, t — время. В момент t = 0 точка покоилась. Найти зависимости от пройденного пути s радиуса кривизны R траектории точки и ее полного ускорения w.
Частица движется по дуге окружности радиуса R по закону l = a sin ωt, где l — смещение из начального положения, отсчитываемое вдоль дуги, a и ω — постоянные. Положив R = 1,00 м, а = 0,80 м и ω = 2,00 рад/с, найти: а) полное ускорение частицы в точках l = 0 и ±a; б) минимальное значение полного ускорения wмин и смещение lm, ему соответствующее.
Точка движется, замедляясь, по окружности радиуса R так, что в каждый момент времени ее тангенциальное и нормальное ускорения по модулю равны друг другу. В начальный момент t = 0 скорость точки равна v0. Найти:
а) скорость точки в зависимости от времени и от пройденного пути s;
б) полное ускорение точки в функции скорости и пройденного пути.
Точка движется по окружности со скоростью v = at, где а = 0,50 м/с2. Найти ее полное ускорение в момент, когда она Пройдет n = 0,10 длины окружности после начала движения.
Из пушки выпустили последовательно два снаряда со скоростью v0 = 250 м/с: первый — под углом ϑ1 = 60° к горизонту, второй — под углом ϑ2 = 45° (азимут один и тот же). Пренебрегая сопротивлением воздуха, найти интервал времени между выстрелами, при котором снаряды столкнутся друг с другом.