Найдите хорду, на которую опирается угол 120°, вписанный в окружность радиуса (корень) √3.
Найдите вписанный угол, опирающийся на дугу, длина которой равна 1/5 длины окружности. Ответ дайте в градусах.
Хорда AB делит окружность на две дуги, градусные меры которых относятся как 5 : 7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.
Дуга окружности AC, не содержащая точки B, имеет градусную меру 200°, а дуга окружности BC, не содержащая точки A, имеет градусную меру 80°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Угол A четырехугольника ABCD, вписанного в окружность, равен 58°. Найдите угол C этого четырехугольника. Ответ дайте в градусах.
AC и BD — диаметры окружности с центром O. Угол ACB равен 38°. Найдите угол AOD. Ответ дайте в градусах.
В окружности с центром O AC и BD — диаметры. Центральный угол AOD равен 110°. Найдите вписанный угол ACB. Ответ дайте в градусах.