Главная » Най... у = 4х^2 - 19х + 11*In х + 715 на отрезке [3/4; 5/4].
13:17

Най... у = 4х^2 - 19х + 11*In х + 715 на отрезке [3/4; 5/4].


Задание:

Найдите наибольшее значение функции у = 4х2 - 19х + 11*In х + 715 на отрезке [3/4; 5/4].

Решение:

ОДЗ: x > 0.

Найдём производную исходной функции:

y'(x) = 8x − 19 + 11/x = (8x2 − 19x + 11) / x.

Определим нули производной:

y'(x) = 0; (8x2 − 19x + 11) / x = 0; 8x2 − 19x + 11 = 0;

x1 = 1, 1 ∈ [3/4 ; 5/4], x2 = 22/16 = 11/8 > 10/8 = 5/4 , x2 [3/4 ; 5/4].

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что на отрезке [3/4 ; 1] исходная функция возрастает, а на отрезке [1; 5/4] убывает. Таким образом, наибольшее значение на отрезке [3/4 ; 5/4] достигается при x = 1 и равно y(1) = 4 * 1/2 − 19 * 1 + 11*ln 1 + 715 = 700.

Ответ: 700.


Похожие материалы:
Нашли ошибку на сайте? Напишите в комментариях!
Категория: Задание 12 ЕГЭ по математике (Значение функции) | Просмотров: 98 | | Рейтинг: 5.0/1