Главная » Найдите наибольшее значение функции у = х + 36/х...
21:57

Найдите наибольшее значение функции у = х + 36/х...


Задание:

Найдите наибольшее значение функции у = х + 36/х + 10 на отрезке  
[ - 10; -1].

Решение:

Исходная функция определена при x ≠ 0. Тогда производная исходной функции y'(x) = 1 − 36/x2. Найдём нули производной: y'(x) = 0 при 36/x2 = 1, x2 = 36, x = ±6. Исследуемому промежутку принадлежит только значение x = − 6. Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что функция y = x + 36/x +10 возрастает на промежутке [−10; −6] и убывает на промежутке [−6; −1]. Наибольшее значение достигается при x = −6 и равно y(−6) = −6 + 36/(−6) + 10 = −2.

Ответ: −2.


Похожие материалы:
Нашли ошибку на сайте? Напишите в комментариях!
Категория: Задание 12 ЕГЭ по математике (Значение функции) | Просмотров: 31 | | Рейтинг: 5.0/1