Логотип сайта

Подготовка к ЕГЭ и ОГЭ

  • Главная
  • Информация о сайте
  • Сочинения ЕГЭ
  • Выпускное сочинение
  • Поиск по сайту

Формулы для решения задач по физике. Электричество

Категория: Физика

Формулы для решения задач по физике из раздела "Электричество".

ЭЛЕКТРИЧЕСТВО
Наименование параметра Формула Обозначения
Закон Кулона Q1 и Q2 ― точечные заряды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, ε ― диэлектрическая проницаемость среды, r ― расстояние между зарядами
Емкость плоского конденсатора ε ― диэлектрическая проницаемость среды между пластинами, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, S ― площадь пластины, d ― расстояние между пластинами
Емкость сферического конденсатора ε ― диэлектрическая проницаемость среды между сферами, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, R1 и R2 ― радиусы внутренней и внешней сфер соответственно
Потенциал электрического поля, созданного точечным зарядом q ― заряд сферы, R ― радиус сферы, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от центра сферы
Потенциал электрического поля, созданного металлической сферой на расстоянии r от центра сферы: внутри сферы и на поверхности (r ≤ R) вне сферы (r > R) q ― заряд сферы, R ― радиус сферы, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от центра сферы
Теорема Гаусса-Остроградского S ― площадь гауссовой поверхности, Еn ― нормальная к поверхности составляющая вектора напряженности электростатического поля, Q ― заряд, охваченный поверхностью интегрирования, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная
Напряженность поля, создаваемого зарядом бесконечной пластины σ ― поверхностная плотность заряда, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от пластины
Напряженность электрического поля, создаваемого металлической заряженной сферой: внутри сферы (r < R) на поверхности сферы (r = R) вне сферы (r > R) τ ― линейная плотность заряда; ε ― диэлектрическая проницаемость среды между пластинами, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от оси нити
Энергия конденсатора С ― емкость конденсатора; U ― напряжение на пластинах
Сопротивление провода ρ0 ― удельное сопротивление материала провода, S ― площадь сечения провода; для меди ρ0 = 0,0175∙10−6 Ом∙м; для алюминия ρ0 = 0,028∙10−6 Ом∙м; для вольфрама ρ0 = 0,055∙10−6 Ом∙м; для железа ρ0 = 0,1∙10−6 Ом∙м
Работа, совершаемая электрическим полем при перемещении точечного заряда q из точки 1 поля в точку 2                                                                                                                                                                                                                                                                                                                     φ1 и φ2 ― потенциалы точек 1 и 2 соответственно
Период колебаний колебательного контура L ― индуктивность катушки, C ― емкость конденсатора
Индукция магнитного поля, создаваемого бесконечно длинным прямым проводником с током Напряженность магнитного поля μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, a ― расстояние до проводника
Индукция магнитного поля в центре кругового проводника с током Напряженность магнитного поля μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, R ― радиус проводника
Индукция магнитного поля на оси кругового проводника с током Напряженность магнитного поля μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, R ― радиус проводника, a ― расстояние до плоскости проводника
Индукция магнитного поля внутри длинного соленоида μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, N ― количество витков, l ― длина соленоида
Магнитная индукция поля, создаваемая отрезком проводника μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, a ― расстояние до оси проводника, α1 и α2 ― углы между направлением тока и направлением на точку, в которой создано магнитное поле, вершинами которых являются соответственно начало и конец прямого участка проводника
Связь между напряженностью H и индукцией B магнитного поля μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная
Индуктивность катушки равна μ0 = 4π∙10−7 Гн/м ― магнитная постоянная; N ― количество витков; N = l/d, d ― диаметр проводника катушки; l ― длина катушки; V ― объем катушки; S ― площадь витка катушки
Средняя объемная плотность энергии ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, ε ― диэлектрическая проницаемость среды, E ― действующее значение напряженности электрического поля
Сила , действующая на заряд Q, движущийся со скоростью  в магнитном поле с индукцией (сила Лоренца α ― угол, образованный вектором скорости движения частицы и вектором  индукции магнитного поля
Cила Ампера (сила, действующая на проводник с током в магнитном поле)
I ― сила тока, l ― длина проводника, В ― индукция магнитного поля, α ― угол между векторами
Циклическая частота колебаний в контуре L ― индуктивность контура; C ― емкость контура
Мгновенное значение I силы тока в цепи, обладающей активным сопротивлением R и индуктивностью L, после размыкания цепи I0 ― значение силы тока в цепи при t = 0; t ― время, прошедшее с момента размыкания цепи
Мгновенное значение I силы тока в цепи, обладающей активным сопротивлением R и индуктивностью L, после замыкания цепи ε ― э.д.с. источника тока; t ― время, прошедшее с момента замыкания цепи
Основной закон электромагнитной индукции εi ― электродвижущая сила индукции; N ― число витков контура; Ψ ― потокосцепление
Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I: L ― индуктивность контура или катушки
Работа по перемещению проводника или по повороту контура в магнитном поле I ― сила тока в проводнике, контуре; dФ ― пересекаемый проводником магнитный поток либо изменение магнитного потока через замкнутый контур
Вращающий момент, действующий на контур с током, помещенный в магнитное поле Значение вращающего момента
 индукция магнитного поля; ― магнитный момент контура, = IS, где I ― ток, протекающий по контуру, S ― площадь контура; α ― угол между векторами  и 
Похожие материалы
  • Алгоритм решения задания 10 (B11) из ЕГЭ
  • Вводные слова.. Шпаргалки по русскому языку
  • 9 интересных фразеологизмов со значениями
  • Архив шпаргалок по физике для подготовки
  • Все шпаргалки по химии в одном архиве
  • 60 примеров сочинений ОГЭ в одном файле
  • Средства языковой выразительности. Тропы
  • 1
  • 2
  • 3
  • 4
  • 5
Оценка: 3.0 из 12

💬 Чат ЕГЭ В Telegram. Вступить

Copyright Vopvet.Ru © 2025 Хостинг от uWeb