Задание:
В обменном пункте можно совершить одну из двух операций:
• за 2 золотых монеты получить 3 серебряных и одну медную;
• за 5 серебряных монет получить 3 золотых и одну медную.
У Николая были только серебряные монеты. После нескольких посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 50 медных. На сколько уменьшилось количество серебряных монет у Николая?
Решение:
Отсутствие золотых монет говорит о том, что Николай все золотые монеты, полученные с помощью второй операции, обменял с помощью первой. Значит, вторых операций было четное число. Пусть вторых операций было ровно 2n. Тогда при применении второй операции:
5 ∙ (2n) серебряных ⇔ 3 ∙ (2n) золотых + 2n медных.
Теперь нужно обменять все 3·(2n) золотых монет с помощью первой операции. Всего таких операций будет 3·(2n)/2 = 3n.
3 ∙ (2n) золотых ⇔ 3 ∙ (3n) серебряных + 3n медных.
Получается, что затратив 10n серебряных монет, Николай при реализации всех золотых получает 9n серебряных. Значит всего он потратил n серебряных. При этом Николай по итогу применения всех операций получил 5n медных. Возвращаясь к условию задачи:
5n = 50, n = 10
Ответ: 10