Дата добавления: 26.03.2016 Равномерно заряженная нить, на единицу длины которой приходится заряд λ, имеет конфигурации, показанные на рис. 3.2, а и б. Считая, что радиус закругления R значительно меньше длины нити, найти модуль вектора напряженности электрического поля в точке О. Дата добавления: 26.03.2016 Очень длинная прямая равномерно заряженная нить имеет заряд λ на единицу длины. Найти модуль и направление вектора напряженности электрического поля в точке, которая отстоит от нити на расстояние y и находится на перпендикуляре к нити, проходящем через один из ее концов. Дата добавления: 26.03.2016 Находящийся в вакууме тонкий прямой стержень длины 2a заряжен равномерно зарядом q. Найти модуль вектора напряженности электрического поля как функцию расстояния r от центра стержня для точек прямой: а) перпендикулярной к стержню и проходящей через его центр; б) на оси стержня вне его. Исследовать полученные выражения при r >> a. Дата добавления: 26.03.2016 Тонкое непроводящее кольцо радиуса R заряжено с линейной плотностью λ = λ0 cos φ, где λ0 — постоянная, φ — азимутальный угол. Найти модуль вектора напряженности электрического поля: а) в центре кольца; б) на оси кольца в зависимости от расстояния x до его центра. Исследовать полученное выражение при х >> R. Дата добавления: 26.03.2016 Система состоит из тонкого заряженного проволочного кольца радиуса R и очень длинной равномерно заряженной нити, расположенной по оси кольца так, что один из ее концов совпадает с центром кольца. Последнее имеет заряд q. На единицу длины нити приходится заряд λ. Найти силу взаимодействия кольца и нити. Дата добавления: 26.03.2016 Точечный заряд q находится в центре тонкого кольца радиуса R, по которому равномерно распределен заряд -q. Найти модуль вектора напряженности электрического поля на оси кольца в точке, отстоящей от центра кольца на расстояние x, если x >> R. Дата добавления: 26.03.2016 Кольцо радиуса r из тонкой проволоки имеет заряд q. Найти модуль напряженности электрического поля на оси кольца как функцию расстояния l до его центра. Исследовать полученную зависимость при l >> r. Определить максимальное значение напряженности и соответствующее расстояние l. Изобразить примерный график функции E (l). |