Дата добавления: 26.03.2016 Имеется бесконечно длинная прямая нить, заряженная равномерно с линейной плотностью λ = 0,40 мкКл/м. Вычислить разность потенциалов точек 1 и 2, если точка 2 находится в η = 2,0 раза дальше от нити, чем точка 1. Дата добавления: 26.03.2016 Имеются два тонких проволочных кольца радиуса R каждое, оси которых совпадают. Заряды колец равны q и -q. Найти разность потенциалов между центрами колец, отстоящими друг от друга на расстояние a. Дата добавления: 26.03.2016 Внутри шара, заряженного равномерно с объемной плотностью ρ, имеется сферическая полость. Центр полости смещен относительно центра шара на величину a. Найти напряженность E поля внутри полости, полагая диэлектрическую проницаемость равной единице. Дата добавления: 26.03.2016 Пространство заполнено зарядом с объемной плотностью ρ = ρ0e-αr3, где ρ0 и α — положительные константы, r — расстояние от центра данной системы. Найти модуль вектора напряженности электрического поля как функцию r. Исследовать полученное выражение при малых и больших r, т. е. при αr3 << 1 и αr3 >> 1. Дата добавления: 26.03.2016 Система состоит из шара радиуса R, заряженного сферически симметрично, и окружающей среды, заполненной зарядом с объемной плотностью ρ = α/r, где α — постоянная, r — расстояние от центра шара. Найти заряд шара, при котором модуль вектора напряженности электрического поля вне шара не будет зависеть от r. Чему равна эта напряженность? Диэлектрическая проницаемость шара и окружающей среды предполагается равной единице. Дата добавления: 26.03.2016 Шар радиуса R имеет положительный заряд, объемная плотность которого зависит только от расстояния r до его центра по закону ρ = ρ0 (1 — r/R), где ρ0 — постоянная. Полагая диэлектрическую проницаемость шара и окружающего пространства равной единице, найти: а) модуль вектора напряженности электрического поля внутри и вне шара как функцию расстояния r; б) максимальное значение напряженности Eмакс и соответствующее ему значение расстояния rm. Дата добавления: 26.03.2016 Напряженность электрического поля зависит только от координат x и y по закону Е = a (xi + уj)/(х2 + у2), где а — постоянная, i и j — орты осей x и y. Найти поток вектора Е через сферу радиуса R с центром в начале координат. |