Задание:
Ковбой Джон попадает в муху на стене с вероятностью 0,8, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 3 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон попадёт в муху.
Решение:
Т. к. из 10 револьверов 3 пристреляны, то вероятность схватить пристрелянный револьвер равна 3/10 = 0,3. Вероятность схватить один из 7 непристрелянных револьверов равна
7/10 = 0,7
Возможны 2 случая попадания Джоном в муху. Событие А = «Джон схватит пристрелянный револьвер и попадает в муху». События «Джон схватит пристрелянный револьвер» и «Джон попадёт из пристрелянного револьвера в муху» независимы, значит, P(А) = 0,3 ∙ 0,8 = 0, 24.
Вероятность события В = «Джон схватит непристрелянный револьвер и попадает в муху» равна P(В) = 0,7 ∙ 0,2 = 0,14.
События А и В несовместны (Джон не может стрелять одновременно как из пристрелянного, так и из непристрелянного револьвера ). Искомая вероятность равна
P(А U В) = P(А) + P(В) = 0,24 + 0,14 = 0,38
Ответ 0,38.